organic compounds

Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

(S)-5-Benzylimidazolidine-2,4-dione monohydrate

Gerzon E. Delgado,^a* Asiloé J. Mora,^a Jorge Uzcátegui,^b Ali Bahsas^c and Alexander Briceño^d

^aLaboratorio de Cristalografía, Facultad de Ciencias, Departamento de Química, Universidad de Los Andes, Mérida 5101, Venezuela, ^bLaboratorio de Fisicoquímica Orgánica, Facultad de Ciencias, Departamento de Química, Universidad de Los Andes, Mérida 5101, Venezuela, ^cLaboratorio de Resonancia Magnética Nuclear, Facultad de Ciencias, Departamento de Química, Universidad de Los Andes, Mérida 5101, Venezuela, and ^dLaboratorio de Síntesis y Caracterización de Nuevos Materiales, IVIC, Caracas, Venezuela Correspondence e-mail: gerzon@ula.ve

Received 16 May 2007 Accepted 7 June 2007 Online 5 July 2007

The crystal structure of the title compound, $C_{10}H_{10}N_2O_2 H_2O$, also known as L-5-benzylhydantoin monohydrate, is described in terms of two-dimensional supramolecular arrays built up from infinite chains assembled *via* $N-H\cdots O$ and $O-H\cdots O$ hydrogen bonds among the organic molecules and solvent water molecules, with graph-set $R_3^3(10)C(5)C_2^2(6)$. The hydrogen-bond network is reinforced by stacking of the layers through $C-H\cdots \pi$ interactions.

Comment

Imidazolidine-2,4-dione, or hydantoin, is a five-membered heterocyclic ring containing a reactive cyclic urea nucleus. This heterocycle represents a significant molecular template in combinatorial chemistry libraries (Boeijen et al., 1998; Park et al., 2001), principally because of the four possible substitution points. Solid-phase syntheses including hydantoin as a starting building block have been reported recently (Ganesan, 2003; Vázquez et al., 2004; Alsina et al., 2005). Hydantoin derivatives have attracted much interest in drug innovation because of their wide range of therapeutic properties (Mutschler & Derendorf, 1995). In particular, the hydantoins substituted at the 5-position have been found to be valuable precursors of a great variety of heterocyclic systems that are associated with a wide range of biological activities, including antiarrhythmic (Knabe et al., 1997), anticonvulsant (Singh et al., 2005) and antitumoral agents (Carmi et al., 2006). The best known hydantoin is 5,5-diphenylhydantoin, or phenytoin, which has been the most widely used anti-epileptic drug since the experimental determination of its anticonvulsant properties (Putnam & Merrit, 1937). In addition, they are known for their uses as herbicides (Shiozaki, 2002) and fungicides (Marton et al., 1993). On the other hand, the biocatalytic conversion of 5-subtituted hydantoins and the related *N*-carbamoyl compounds to amino acids has recently received considerable attention for their potential applications in the industrial production of optically pure amino acids, through an enantioselective enzymatic reaction (Wilms *et al.*, 2001; Chen *et al.*, 2003; Burton & Dorrington, 2004).

Continuing our studies on *N*-carbamoyl amino acids and hydantoin compounds (Seijas *et al.*, 2006, 2007), in this work we report the crystal structure of the title compound, (I), a new 5-subtituted hydantoin derivative.

The asymmetric unit of (I) consists of one L-5-benzylhydantoin molecule and a solvent water molecule. The dihedral angle between the hydantoin and benzene rings is $55.6 (3)^{\circ}$. The organic molecule adopts a *gauche* conformation (Fig. 1). The hydantoin ring is essentially planar, with maximum deviations of 0.024 (4) Å for C4 and -0.023 (4) Å for C5. The N1-C2-O2 angle is greater than the N3-C2-O2 angle (Table 1). This difference is also observed in the hydantoin molecule (Yu *et al.*, 2004) and 50 other hydantoin derivatives reported in the Cambridge Structural Database (Version 5.28; Allen, 2002) with both NH groups unsubstituted and sp^3 -hybridization at C5.

The structure of (I) is built up from the self-assembly of the hydantoin molecules with solvent water molecules *via* hydrogen-bonding interactions. The water molecule is involved as a donor and an acceptor of hydrogen bonds. Molecules of (I) form four conventional hydrogen bonds. The

Figure 1

A view of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 20% probability level and H atoms are shown as spheres of arbitrary radii.

N3-H3···O1W(x + 1, y, z) and O1W-H1W···O4(x - 1, y, z)y - 1, z) interactions form infinite chains, which run along the b axis. These chains may be described in graph-set notation as

Figure 2

A partial packing view of (I). Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry codes: (i) x + 1, y, z; (ii) x - 1, y, z; (iii) x - 1, y - 1, z.]

Figure 3

A packing view of (I) in the bc plane, showing the herring-bone-like array. [Symmetry code: (v) -x + 1, $y - \frac{1}{2}$, -z + 1.]

 $C_2^2(6)$ (Bernstein *et al.*, 1995) (Fig. 2). Adjacent chains are linked laterally by $O1W - H2W \cdots O2(x, y, z)$ and $N1 - W \cdots O2(x, y, z)$ H1···O4(x - 1, y - 1, z) hydrogen bonds, forming infinite chains parallel to the *a* axis, with graph-set motifs $C_2^2(6)$ and C(5), respectively (Fig. 2). Together, these hydrogen-bond patterns produce a two-dimensional array parallel to the ab plane with graph set $R_3^3(10)$ and the formation of a 15-atom macrocycle (Fig. 2). This graph set is also observed in the hydantoin compounds ROKSOZ (Gauthier et al. 1997) and SINZEU (Galdecki & Karolak-Wojciechowska, 1986). Details of the hydrogen-bonding geometry are given in Table 2. Layers join pairwise by $C-H \cdot \cdot \pi$ interactions (Fig. 3). The C10-H10 group of the benzene ring is oriented towards the face of the aromatic ring of a neighboring molecule [C10-H10···Cg($-x + 1, y - \frac{1}{2}, -z + 1$) = 3.13 (3) Å; Cg is the centroid of the C7-C12 ring]. This interaction generates a herring-bone-like array in the *bc* plane (Fig. 3).

Experimental

L-Phenylalanine (500 mg, 3.0 mmol) was dissolved in water (20 ml) and the solution was acidified with concentrated HCl (37% v/v) to pH 5.5. KOCN (1458 mg, 18.0 mmol) was then added to this solution. The mixture was warmed, with agitation, to 333 K over a period of 4 h. The resulting solution was cooled at room temperature and acidified with concentrated HCl (37% v/v) to pH 1, at which point a white solid precipitated. The solid was filtered off and washed with cool water (m.p. 467-469 K). Crystals of (I) suitable for X-ray diffraction analysis were obtained by slow evaporation of a 1:1 water-ethanol solution.

Crystal data

$C_{10}H_{10}N_2O_2 \cdot H_2O$	$V = 556.0 (3) \text{ Å}^3$
M = 208.22	Z = 2
$M_r = 200.22$ Monoclinic, $P2_1$	Mo $K\alpha$ radiation
a = 6.229 (2) A	$\mu = 0.09 \text{ mm}^{-1}$
b = 6.244 (3) Å	T = 293 (2) K
c = 14.475 (3) A $\beta = 99.05 (3)^{\circ}$	$0.40 \times 0.36 \times 0.20 \text{ mm}$

 $R_{\rm int} = 0.006$

1 restraint

3 standard reflections

 $\Delta \rho_{\rm max} = 0.56 \text{ e} \text{ Å}^-$

 $\Delta \rho_{\rm min} = -0.27 \text{ e} \text{ Å}^{-3}$

every 150 reflections

intensity decay: none

H-atom parameters constrained

Data collection

Rigaku AFC-7S diffractometer 1192 measured reflections 1088 independent reflections 976 reflections with $I > 2\sigma(I)$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.047$ $wR(F^2) = 0.141$ S = 1.061088 reflections 138 parameters

Table 1

Selected geometric parameters (Å, °).

N1-C2	1.325 (5)	N3-C4	1.339 (5)
N1-C5	1.447 (5)	C4-O4	1.240 (4)
C2-O2	1.226 (5)	C4-C5	1.512 (5)
C2-N3	1.394 (4)		
C2-N1-C5	112.6 (3)	O4-C4-N3	125.9 (3)
O2-C2-N1	129.2 (3)	O4-C4-C5	126.6 (4)
O2-C2-N3	123.3 (3)		

Table 2		
Hydrogen-bond geometry	/ (Å,	°).

$D - H \cdot \cdot \cdot A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N3-H3\cdots O1W^{i}$	0.86	1.90	2.750 (4)	169
$O1W - H2W \cdot \cdot \cdot O2$	0.87	1.85	2.712 (4)	175
$N1-H1\cdots O4^{ii}$	0.86	2.24	3.040 (4)	154
$O1W-H1W\cdots O4^{iii}$	0.99	1.88	2.864 (5)	172
$C5\!-\!H5\!\cdots\!O2^{iv}$	0.98	2.44	3.336 (5)	152

Symmetry codes: (i) x + 1, y, z; (ii) x - 1, y, z; (iii) x - 1, y - 1, z; (iv) x, y + 1, z.

All H atoms attached to C atoms were positioned geometrically and assigned $U_{iso}(H)$ values equal to $1.2U_{eq}(C)$. The H atoms of the water molecule were located in the final difference Fourier map and the $U_{iso}(H)$ values were set at $1.5U_{eq}(O)$. The absolute structure was assigned from the known configuration of L-phenylalanine.

Data collection: *MSC/AFC Diffractometer Control Software* (Molecular Structure Corporation, 1993); cell refinement: *MSC/AFC Diffractometer Control Software*; data reduction: *TEXSAN* (Molecular Structure Corporation, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *DIAMOND* (Brandenburg, 2001); software used to prepare material for publication: *PLATON* (Spek, 2003) and *publCIF* (Westrip, 2007).

This work was supported by CDCHT–ULA (grant Nos. C-1415-06-08-C and C-1416-06-08-B) and FONACIT (grant No. LAB-97000821).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK3128). Services for accessing these data are described at the back of the journal.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.

- Alsina, J., Scott, W. L. & O'Donnell, M. J. (2005). Tetrahedron Lett. 46, 3131– 3135.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Boeijen, A., Kruijtzer, J. A. & Liskamp, R. M. (1998). Bioorg. Med. Chem. Lett. 8, 2375–2380.
- Brandenburg, K. (2001). *DIAMOND*. Version 2.1e. Crystal Impact GbR, Bonn, Germany.
- Burton, S. G. & Dorrington, R. A. (2004). Tetrahedron Asymmetry, 15, 2737– 2741.
- Carmi, C., Cavazzoni, A., Zuliani, V., Lodola, A., Bordi, F., Plazzi, P. V., Alfieri, R. R., Petronini, P. G. & Mor, M. (2006). *Bioorg. Med. Chem. Lett.* 16, 4021– 4025.
- Chen, H., Ho, C., Liu, J., Lin, K., Wang, Y., Lu, Ch. & Liu, H. (2003). *Biotechnol. Prog.* **19**, 864–873.
- Galdecki, Z. & Karolak-Wojciechowska, J. (1986). J. Crystallogr. Spectrosc. Res. 16, 467–474.
- Ganesan, A. (2003). Methods Enzymol. 369, 415-434.
- Gauthier, T. J., Yokum, T. S., Morales, G. A., McLaughlin, M. L., Liu, Y.-H. & Fronczek, F. R. (1997). Acta Cryst. C53, 1659–1661.
- Knabe, J., Baldauf, J. & Ahlhem, A. (1997). Pharmazie, 52, 912-919.
- Marton, J., Enisz, J., Hosztafi, S. & Timar, T. (1993). J. Agric. Food Chem. 41, 148–152.
- Molecular Structure Corporation (1993). MSC/AFC Diffractometer Control Software. Version 5.1.0. MSC, The Woodlands, Texas, USA.
- Molecular Structure Corporation (1995). TEXSAN. MSC, The Woodlands, Texas, USA.
- Mutschler, E. & Derendorf, H. (1995). Drug Actions, Basic Principles and Therapeutic Aspects. Stuttgart: Medpharm Scientific Publishers.
- Park, K. H., Ehrler, J., Spoerri, H. & Kurth, M. J. (2001). J. Comb. Chem. 3, 171–176.
- Putnam, T. J. & Merrit, H. H. (1937). Science, 85, 525-526.
- Seijas, L. E., Delgado, G. E., Mora, A. J., Bahsas, A. & Briceño, A. (2007). Acta Cryst. C63, 0303–0305.
- Seijas, L. E., Delgado, G. E., Mora, A. J., Bahsas, A. & Uzcátegui, J. (2006). Av. Quim. 1, 3–7.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Shiozaki, M. (2002). Carbohydr. Res. 337, 2077-2088.
- Singh, G., Driever, P. H. & Sander, J. W. (2005). Brain, 128, 7-17.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Vázquez, J., Royo, M. & Albericio, F. (2004). Lett. Org. Chem. 1, 224-226.
- Westrip, S. P. (2007). publCIF. In preparation.
- Wilms, B., Wiese, A., Syldatk, C., Mattes, R. & Altenbuchner, J. (2001). J. Biotechnol. 86, 19–30.
- Yu, F.-L., Schwalbe, C. H. & Watkin, D. J. (2004). Acta Cryst. C60, o714-o717.